

The My organic matter journey.....

- USGA/EIFG Greens Study (9 years).
- People a lot brighter than me
- "Talking Turf" GCSAA conversation.
 - Paul Rieke, USGA visit
- Conversation with Paul Vermeulen. Director, Competitions Agronomy at PGA TOUR, former USGA Agronomist.
- Great funding/time support from USGA/EIFG (initially), NE-GCSA, GCSA of SD, Peaks and Prairies GCSA, industry and a slew of GC supers.
- Road Show.

Formation of Mat

- Formation of mat layer increased approximately <u>0.3 inchannually</u> (following establishment year).
- No visible layering, only a <u>transition</u> is evident between mat and original rootzone.
- Topdressing program
 - Light, Frequent
 - every 10-14 days (depending on growth) and combined with verticutting
 - Heavy, Infrequent
 - 2x annually (spring/fall) and combined with core aerification

Change in Rootzone Particle Size Distribution

- All rootzones tested in 2004 showed increased proportion of fine sand (0.15 – 0.25 mm) with decreased proportion of gravel (> 2.0 mm) and very coarse sand (2.0 – 1.0 mm).
- 5 of 8 rootzones were significant (z-score) for increased fine sand content.

Conclusions

 The K_{SAT} decrease over time may be due to organic matter accumulation above and in the original rootzone and/or the increased fine sand content originating from topdressing sand

Organic Matter Management Study

Objectives

1. Determine if conventional hollow tine is more effective than solid tine aerification at managing organic matter accumulation

Organic Matter Management Study

Objectives

- Determine if conventional holds, and is more effective than solid tine aerification at managing senic matter accumulation
- 2. Determine if venting methods are effective at managing OM accumulation

Tine Treatment None 2X Hollow tine 2x Solid tine Wenting Treatment None PlanetAir Hydroject Bayonet tine Needle tine

All treatments received the same topdressing quantity (22 ft³/M*) but different frequency

Equilibrated to identify differences of the practices in question

*1 $ft^3 = 100$ lbs of dry sand; $yd^3 = 2700$ lbs

Materials and Methods

- Green Age:
- 12 years
 - 9 years
- Data collected:
 - OM% (pre-cultivation/monthly)
 - Single wall infiltration (monthly)

OM Data Analysis Year 1

 No differences between green age except for higher % in older green

OM Data Analysis Year 1

No differences between green age except for higher

• No differences among venting methods

OM Data Analysis Year 1

No differences between green age except for higher

No discenses among venting methods

No interactions with solid/hollow/none

OM Data Analysis Year 2

• No differences between green age except for higher % in older green

OM Data Analysis Year 2

No differences between green age except for higher

No differences among venting methods

OM Data Analysis Year 2

No differences between green age except for higher

- · No interactions with solid/hollow/none

OM Data Analysis Year 2

- To differences between green age except for higher

- No differences among solid/hollow/none

Let's take a quick look at that...

What these data do/don't suggest

- Cultivation, when toporessing quantity was equal, was insignificant as a means to control OM
 However, a superintendent must use whatever tools they have at their disposal to ensure sand is making it into the profile and not the mower buckets

≻National Survey

➤ Determine cause and effect relationship among managemnt practices and their interactions relative to surface OM accumulation

Scope

- · Sixteen states
 - Nebraska, South Dakota, Iowa, Wyoming, Colorado, Washington, Wisconsin, Illinois, New Jersey, Minnesota, New Mexico, Montana, Hawaii, California, Connecticut, Arkansas.
- · 117 golf courses sampled
 - More than 1600 samples

Survey Summary

- None of the variables collected, by themselves, or in combination with others, <u>predicted</u> OM
- Courses using >18 cubic ft*/M of topdressing with or without "venting" had lower OM
- Of the <u>known</u> cultivars, no differences in OM were evident

*1 $ft^3 = 100$ lbs of dry sand; $yd^3 = 2700$ lbs

Topdressing

Old Tom Morris (1821–1908) is thought to have discovered the benefits of topdressing accidentally when he spilled a wheelbarrow of sand on a putting green and noted how the turf thrived shortly afterward (Hurdzan, 2004).

J.B. Beard is his classic textbook "Turfgrass Science & Culture, 1973 writes:

writes:
"The most important management practice for OM management is topdressing"

2016 Survey Respondents via Greenkeeper

Please mark all that apply. In the last 5-10 years, on our greens, our facility has:

- Increased topdressing quantity
- Increased topdressing frequency Made minimal changes in
- Increased hollow tine (equal or greater than 0.5") aeration
- Increased solid tine (equal or greater than 0.5") aeration
- Decreased hollow (equal or greater than 0.5") tine aeration
- Decreased solid tine (equal or
- greater than 0.5") aeration
- Made minimal changes in topdressing application quantity/frequency.
- Made minimal changes in cultivation practices.
- Increased "venting" practices.

How do you get rid of OM? Decomposition (microbial) Increase surface area and aeration Inoculation (inconsistent, not reliable) Removal Power raking, dethatching, core aerification Dilution Topdressing

Sand Particle Size		
Particle	Diameter (mm)	Sieve Mesh #
Fine Gravel	2 – 3.4	10 – 6
V. Coarse Sand	1 – 2	18
Coarse Sand	0.5 – 1	35
Medium Sand	0.25 - 0.5	60
Fine Sand	0.15 - 0.25	100
Very Fine Sand	0.05 - 0.15	270
Difficult to	o incorporate	

	Particle Size D	oistribution for Dra
Particle Name	Diameter (mm)	Recommendation (by weight)
Fine Gravel	2 - 3.4	Not more than 10% total, maximum of 3% fine gravel
Very Coarse Sand	1 – 2	
Coarse Sand	0.5 – 1	Mainting of COOK
Medium Sand	0.25 – 0.5	Minimum of 60%
Fine Sand	0.15 - 0.25	Not more than 20%
Very Fine Sand	0.05 - 0.15	Not more than 5%
Silt	0.002 - 0.05	Not more than 5%
Clay	< 0.002	Not more than 3%
Total Fines	very fine sand + silt + clay	Less than or equal to 10%

Research says, so far (3 years)...

- 1. Topdressing improved the surface:
 - reduced the OM concentration
 - produced a drier surface
- 2. Sand size impacts on mat layer physical properties:
- medium-fine (>20% fine sand) increased the fineness of sand in mat layer but this did not influence infiltration or VWC
 - medium-coarse and medium-fine similar water infiltration and surface wetness
- fine-medium sand slowed water infiltration and increased surface water retention
 - fine-medium sand substantially increased fine and very fine particles in mat layer

Research says, so far (3 years)...

- 3. Core cultivation and backfilling with medium-coarse sand very effective at:
 - reduces surface wetness and OM concentration
 - reduces the amount of fine and very fine sand in the mat layer, thus offsetting the negative impact of those particles

Managing for Drier Mat Layer

Topdressing

- Cost and interference with play and mowing are limiting factors
- Apply as much and as often as feasible (~48 tons / acre)
- Select as coarse a sand as feasible
 medium-fine (0.5-mm) sand with less 30% fine sand

Core Cultivation

- Very effective at producing a drier surface
- Needed if reducing OM is important (removal + allows for more sand
- Time for healing is greatest limitation (less so for solid tines and venting)*

How much sand to use for topdressing? Generic recommendation is 20-40 ft3 per 1000 sq. feet/yr (about 0.5 inch/M/yr) - UNL worked showed 20-24 ft3 for OM management Varies by amount of: - Traffic - Grass species or cultivar - Nitrogen Applied - Water Applied - Microclimate/Location Key is matching your growth rate to optimize topdressing +

"Growth Potential"

Pace Turf

-https://www.paceturf.org/public/sand-and-growthpotential

#clipvol "One bucket at a time"

· Micah Woods, Asian Turfgrass Center

Greens Organic Matter Management Tool

An empirical model to predict OM fate in putting green rootzones

buckeyeturf.osu.edu

#OM246 Putting Green Organic Matter by Depth

· Micah Woods, Asian Turfgrass Center

OM Testing

- Know how your sample was taken and compare notes with others that use the same protocol
- Take annual tests to determine long-term trend
 Same time of year
 Same location and green (or all greens!)
 Avoid a set sampling depth

 - #OM246
- Correlate your test results with turf quality and performance during stressful environmental conditions to determine need for changes in management program
- Threshold/critical levels likely vary across the globe and from course to course

Clarification/over-simplification regarding OM <u>Management</u> on sand based rootzones

- One size does not fit all
- The universal optimal % OM has not been scientifically determined and may be mythical
- Methodology & sampling differences exist and must be considered Help is on the horizon (USGA OM Brain Trust)
- Cultivation is critical to increase efficiency in sand incorporation
- Solid are not different than coring tines
- The benefits of topdressing continue to be identified.

Chapter 12 ASA Monograph (3RD Edition)

Characterization, Development, and Management of Organic Matter in Turfgrass Systems

Acknowledgements

- USGA
- Environmental Institute for Golf
- Nebraska GCSA
- GCSA of South Dakota
- Peaks & Prairies GCSA
- Jacobsen, Toro, JRM & PlanetAir

