

An effective fertilization program-

- · Promotes uniform growth
- Cost-effective

2

6

· As agronomically sound as possible

Topics

- ➤ Nutrients: N, P, K **≻**Application Timing
- **≻**Choosing Products

3

Agronomic Law of Minimum

- "growth is proportional to the amount of the most limiting nutrient, whichever nutrient it may be"
- Macronutrients are not "more important" than micronutrients simply used in great quantity.

Classification of Nutrients

- Macro nutrients
 - 0.1 to 6.0% concentration by dry wt. of tissue
 - N 2-6%; P 0.25-1%; K 1-3%
 - Most common fertilizer needs
 - Structure of molecules
 - DNA, RNA, Chlorophyll

Classification of Nutrients

Micronutrients

8

- -<1.0 to 500 ppm concentrations
 - -ppm: 1 inch in 16 miles
- -Required in small quantities
- -Catalytic or regulatory roles
 - •Make reactions proceed/'go'

7

N Deficiency Symptoms

- Reduced growth rate, old leaves lose color
- Chlorosis (yellowing of leaves)
- Density loss

9 10

Nitrogen Cycling

- Microbial activity influenced by:
 - Food source
 - Specific microbe
 - Soil pH
 - Soil aeration (oxygen or lack of)
 - Soil moisture (water)
 - Soil temperature

11 12

Key Processes (N loss)

• Volatilization - loss of N as ammonia Urease

Urea + $H_2O \longrightarrow CO_2 + NH_3$

- Factors:
 - · Urea level
 - · Urease enzyme present (thatch)
 - Temperature (slow < 50 F, increases to 77 F)

Phosphorus (P)

- Function
 - -Energy transformations (ATP, ADP)
 - -Constituent of genetic material

13

14

Plant Responses to P

- Root growth
- Shoot growth
 - P for energy transformations and structural components

15

16

P Deficiency Symptoms

- Reduced shoot growth
 - ATP/ADP involved in many metabolic reactions
- Dark green color
 - · Reduced leaf area, more chloroplasts/unit area,
- Red/purplish color
 - Anthocyanin accumulation

Phosphorus Applications

- Apply according to soil test recommendations as part of annual program
- Critical for rooting initiation
- Apply at (re)seeding
- Apply after aeration
- Immobile so residual is high but may not be where the plant can use it (at the surface for seeding)

Potassium (K)

- · Only nutrient that is not a constituent of any plant compound
- K is second behind only N in concentration in the plant
- What role does K serve in the plant?

21 22

Function

- Photosynthesis
 Carbohydrate and protein formation
 Enzymatic reactions
 Water relationships
 Enhances stress tolerance

Plant Responses to K

- Root growth
 - deeper rooting & branching
- Stomatal control
 - K influences transpiration by regulating opening and closing of stoma
- Uptake of other nutrients
- Cell wall size and thickness
- Carbohydrate synthesis

23 24

K Deficiency Symptoms

- Leaves soft, drooping –reduced hardiness
- Interveinal yellowing of older leaves
- Reduced rooting
- Wilting
- Leaf margins brown
- Leaf tips roll
- Decreased tillering

Potassium Applications

- Sand rootzones apply as part of annual program
 Potassium leaches from sand rootzones
- Native profiles (medium, fine textured) soil test
 - Recommendations based on annual amounts
- General recommendation:
 - Sand rootzone: N:K ratio of 1:1
 - Native rootzone: N:K ratio of 1:0.5

25 26

Types of N Carriers

- 1. Fast/quick release water soluble
 - Salt based N carriers all types dissolve readily when adequate water is present forming either ${\rm NO_3}^-$ or ${\rm NH_4}^+$
 - Provide immediate nitrogen availability

27 28

Quickly Available N Fertilizers

Advantages

- less expensive
- quick response
- water-soluble
- not temperature dependent

Disadvantages

- peak and valley feeding
- higher burn potential
- higher labor costs

Examples: urea, ammonium sulfate, potassium nitrate

Quick Release N Carriers (Salt Types)

Carrier	Analysis	N Release
Ammonium nitrate (NH ₄ NO ₃)	33-0-0	Water soluble
Ammonium sulfate ((NH ₄) ₂ SO ₄)	20-0-0	Water soluble
Potassium nitrate (KNO ₃)	13-0-44	Water soluble

29 30

Characteristics of Salt Types

- High salt index/high potential for burn
- Rapid response
- Apply at low rates, spoon feeding programs
- Inexpensive

Slowly Available N Fertilizers

Advantages

- longer residual effect
- low burn potential
- less peak and valley feeding
- lowered N losses
- reduced labor

Disadvantages

- higher cost
- slower response
- most are temperature and/or moisture dependent

Examples: ureaformaldehyde, IBDU, methylene urea, sulfur- and resin-coated fertilizers, natural organics

31 32

Hrea

- 46% N
- Soluble Synthetic Organic
- Nonionic, highly leachable
- Subject to volatilization
 Low acidity 1.8/kg N
- Low salt index 1.62

UMAXX (47-0-0) and UFLEXX (46-0-0)

- Contains both nitrification (dicyandiamide) and urease (NBPT) inhibitors
- SuperN liquid mix of dicyandiamide and NBPT without urea

33

Slow Release N Carriers

Synthetic organic N carriers - methylene urea based, provide a mixture of sources to provide both short- and long-term response

Methylene Ureas

- Short chain molecules are water soluble
- Longer chain molecules are water insoluble
- Longer chain molecules N is released by microbial degradation

Slow Release N Carriers

- 2. Natural organic N carriers
 - Derived from a variety of sources such as animal, plant, sewage, composts
 - N release is based on microbial degradation

37 38

Slow Release N Carriers

- 4. Coated N carriers
 - Several coating technologies including sulfur, resins, plastics, waxes, polymers
 - N release occurs with diffusion of water into the granule and diffusion of urea out of the granule into soil solution
 - Some temperature response

40

Water Solul	ole vs. Wat Nitrogen	er Insoluble
	WSN (Fast)	WIN (Slow)
Cost	Low	High
Solubility	High	Low
Response	Quick	Slow
Residual Run off/	Short	Long
Leaching	High	Low
Burn Potential	High	Low
Appl. Frequency	High	Low

39

N-SOURCE	SALT INDEX	RESIDUAL (WEEKS)
QUICK RELEASE		
Urea	1.62	4-6
Ammonium Nitrate	3.18	4-6
Ammonium Sulfate	3.25	4-6
SLOW RELEASE		
IBDU	0.20	6-8
Methylene Urea	0.86	6-8
Ureaformaldehyde	0.20	52+
Sulfur Coated Urea	0.70	Varies
Natural Organics	0.70	Varies

• Fertilizer blending takes advantage of the benefits of quickly and slowly available N sources
• Blending can make slowly available N sources more affordable

- Sources more affordab

41 42

- Fertilizer selection depends economy, preference, labor and goals
- If slow-release fertilizers selected:
 - Apply early enough to provide available nitrogen at the expected period of vertical growth slowing or stoppage

Timings for Carriers

- Soluble N sources: applied about the time growth ceases
- Sulfur coated ureas: 10 14 days prior
- Natural organics: 3 4 weeks prior
- IBDU: 4 6 weeks prior
- Mixed soluble and slow release: $4-10\ \mbox{days}$ prior depending on % slow release and carrier

43 44

"Growth Potential" dictates application timing

 N carriers requiring soil microbial activity for N release must be applied 3 – 8 weeks prior to need in fall and spring in contrast in the summer where N availability may occur in 7 – 14 days.

Late Fall Fertility is no longer recommended

45 46

47 48

Why the change?

- Environmental
- Agronomic

49 50

Risks with Late Fall App's

• Runoff/Leaching

Factors Affecting Leaching

- Soil temp. microbial nitrification
 - Frozen or impermeable?
- Soil moisture
- Drainage
- Turfgrass characteristics
- Soil texture (sand vs. clay)

51 52

53 54

Factors Affecting Fertilizer "Value"

- Initial Cost
- Turf safety
- How long does it last?
- How easy is it to apply (spreadability)?
 - SGN
- Uniformity
- Incidental nutrients and other "stuff"

55 56

Fertilization Tips

- Fertilize to promote acceptable color, adequate growth, and rapid traffic recovery
- Use a combination of slow- and quick N sources
- Use iron if you want color without growth
- Let the grass tell you when it needs fertilization

57 58

Nitrogen Mineralization

- Release of significant plant available nitrogen occurs when soils are warm, moist and aerated.
- Nitrogen is mineralized from organic matter; older turf stands (with more soil organic matter) require less fertilizer (up to a 1 lb/yr).
- If clippings are returned, fertility can be reduced up to a 1 lb/yr.

Nitrogen Fertilization Considerations

- Don't fertilize turf that isn't actively growing.
- · Eliminate late fall fertility.
- Older lawns need less fertilizer and fewer applications annually than newer stands. Eliminate applications during high mineralization periods such as mid-summer or spring.
- Over-fertilized turf wastes money, can lead to excessive thatch accumulation, increased diseases and nitrate leaching to
- Different fertilizer sources have different release characteristics.

59 60

How Much?

- Depends on use and end goal
- Depending on stand age, cool season grasses in the central great plains need from 2-4 lbs/N/YR/M

61 62

63

Contact Information

- Roch Gaussoin
- rgaussoin1@unl.edu

☑@rockinsince57

Thank you!