

Research Need (2004)

Comprehensive evaluation of sand quantity, particle size, sampling protocol and cultivation methods

Organic Matter Management Study

Objectives

 Determine if conventional hollow tine is more effective than solid tine aerification at managing organic matter accumulation
 Determine if venting methods are effective at managing OM accumulation

7

Tine TreatmentVenting TreatmentNoneNone2X Hollow tinePlanetAir2x Solid tineHydrojectBayonet tineNeedle tine

9

10

- $\mbox{ \ }$ Cultivation, when top dressing quantity was equal, was insignificant as a means to control OM
- However, a superintendent must use whatever tools they have at their disposal to ensure sand is making it into the profile and not the mower buckets

 Tine Trial Fall 2021

 • Check

 • Hollow ½" ID
 Procore 648 - 3" target depth on all tines

 • Solid ½"OD
 Dryject = 5"

 • DryJect (3x3)
 Sampled for OM the day after

 • ½" Solid (Needle)
 Treatment in 1' depth increments to 4 "

 • DryJect (3x2)
 • Needle + Solid

 • Needle + Hollow
 19

Treatment	% OM 0-4"	
Check	4.5	а
Hollow	3.7	b
Needle	3.1	С
DryJect (3x3)	2.7	d
Needle + Hollow	2.3	d
DryJect (3x2)	2.3	d
Needle + Solid	2.3	d
Solid	2.2	d

- No differences among depths
- Dilution only
- Dryject and needle tine were least surface disruptive
- Data is preliminary

20

21

Fall 2023 Data Results (<.05 = statistical difference)			
5-Oct 25-Oct			
il-2 Infil-3			
0.188 0.1061			
0001 <.0001			
0076 0.4673			
f			

44

45

Sampled with a 1" probe above aeration hole; 0-3" and 3-6" with 10 random locations per aerator

46

60 ft^{2.}

