Practical Turfgrass Physiology

(Keeping stuff from dying)

Zac Reicher
http://turf.unl.edu/

Plant energy processes

1. Photosynthesis
2. Respiration
3. Growth
4. Storage

The healthier the plant going into stress, the better the survival
1. Photosynthesis (Ps)

CO₂ + H₂O + Sun ⇒ CHO + O₂

• C₃ grasses: cool-season
• C₄ grasses: warm season

Temperature controls photosynthesis

Photosynthesis (Ps)

• At higher temps, photorespiration decreases Ps efficiency
 CO₂ + H₂O + Sun ⇒ CHO + O₂
 CO₂ + H₂O + Sun ⇒ CHO + CO₂

• Cooling turf?
• Syringing
• Fans
• Climate change?
 • ↑ CO₂
 • ↑ temps
Other Ps determinants

- Leaf area
- Mowing height
- Mowing frequency
- Damaged leaves
- Vertical mowing
- Topdressing
- Smooth rollers
- Walking mowers
- Traffic

Optimum mowing heights for turfgrass species

<table>
<thead>
<tr>
<th>Species</th>
<th>inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creeping bentgrass</td>
<td>0.125-0.5</td>
</tr>
<tr>
<td>Annual bluegrass</td>
<td>0.25-1.0</td>
</tr>
<tr>
<td>Kentucky bluegrass</td>
<td>2.0-3.0</td>
</tr>
<tr>
<td>Fine fescue</td>
<td>2.0-3.0</td>
</tr>
<tr>
<td>Perennial ryegrass</td>
<td>2.0-3.0</td>
</tr>
<tr>
<td>Tall fescue</td>
<td>3.0-4.0</td>
</tr>
<tr>
<td>Bermudagrass</td>
<td>0.25-1.0</td>
</tr>
<tr>
<td>Zoysiagrass</td>
<td>0.50-1.0</td>
</tr>
</tbody>
</table>
Other Ps determinants

• Shade, especially morning shade
Other Ps determinants

• Nitrogen
• RuBisCo
• Magnesium
• Pigments?
 • Darkening pigments may increase temps and increase photorespiration
 • Sun-screening type pigments may reduce photosynthesis

2. Respiration

The process of converting stored energy into usable energy

\[
\text{CHO + O}_2 \Rightarrow \text{H}_2\text{O + CO}_2 + \text{ATP (Energy)}
\]
Temperature controls respiration

Other factors affecting Rd

\[\text{CHO} + \text{O}_2 \rightarrow \text{H}_2\text{O} + \text{CO}_2 + \text{ATP} \text{ (Energy)} \]

Soil oxygen

- Saturated soils
- O2 diffuses 10,000 times faster in air than water
- High temperature in soils
- Hot vs cold flooding
- Drainage
- Clay
- Low oxygen, anaerobic respiration
 19 times less efficient and produces ethanol (toxic), but can be done for a short amount of time
Soil oxygen

- Soil preparation
- Clay
- Layers
- Traffic management
- Aerification
- Light weight mowers
- Alternate mowing patterns
- Drainage
- Soil modification
Tine spacing

inches | 2x2 | 2x3 | 2x4 | 2x6 | 3x4 | 3x6 | 4x6 |
holes/sq ft | 36 | 24 | 18 | 12 | 12 | 8 | 6 |
1/2" tine | 4.9 | 3.3 | 2.5 | 1.6 | 1.6 | 1.1 | 0.8 |
3/4" tine | 11.1 | 7.4 | 5.5 | 3.7 | 3.7 | 2.5 | 1.8 |
1" tine | 19.6 | 13.1 | 10.8 | 8.6 | 8.6 | 4.4 | 3.3 |

Percent surface area affected by aerification tine size and spacing.
3. Growth

- Irreversible expansion of plant size or number
- Plant growth is most affected by season
 - Cool-season grasses:
 - Shoot growth: 64-75F (18-24C)
 - Root growth: 50-64F (10-18C)
 - Warm-season grasses
 - Shoot growth: 60-95F (27-35C)
 - Root growth: 75-85F (24-29C)

Life span?

- Turfgrass crowns are perennial
- Leaves and roots are fairly short-lived (30-60 days) depending on:
 - Season
 - Temperature
 - Traffic
Major effects on growth

- Season
- Temperature
- Water
- Soil type
- N rate and timing

Root length and density affected by rootzone temperatures.

Figure 4: Seasonal rooting pattern of Kentucky Bluegrass as affected by N programming.

Adequate nitrogen

Higher
Relative shoot growth
Lower
Minimal
Relative root growth
Extensive
Excessive nitrogen
Effects on growth

- Mowing height affects
 - Shoot density
 - Rooting depth
 - Root growth rate
 - Raising mowing height during the summer?
- Mowing frequency
- Vertical mowing, aerification

Effects on growth

- Genetics
- Shade
 - Narrow leaves, longer leaves, fewer tillers, more upright growth
- Growth regulators
- Other nutrients
 - Phosphorus – improves root growth and establishment when applied at seeding
 - Potassium – some stress tolerance
 - Preemergence herbicides androoting?
- Pigments?
4. Storage

- Used by plant to grow and/or recover
- Storage is affected by photosynthesis, respiration and growth

Factors affecting storage

- N rate and timing

Factors affecting storage

- Water (saturation)
- Potassium?

Effects of soil saturation on water soluble carbohydrate content in 5 creeping bentgrass cultivars.

<table>
<thead>
<tr>
<th>Depth of waterlogging**</th>
<th>Control*</th>
<th>6"</th>
<th>2"</th>
<th>0.4"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>84 a</td>
<td>57.5 b</td>
<td>54.3 b</td>
<td>47.3 b</td>
</tr>
</tbody>
</table>

*Control = well-drained treatment without saturation
**Saturation at 6, 2, and 0.4 inches below the soil surface, respectively.
Energy balance

\[
Ps - Rd = G + S
\]

Cool

Warm

Warmer

Hot

1. N fertilization

2. Spring (cool, sunny days, cool nights)

3. Spring fertilization

4. Summer (hot, sunny days, hot nights)

5. Summer fertilization (heavy)

6. Fall (cool, sunny days, cool nights)

7. Fall fertilization

8. Late fall (cool, sunny days, cold nights)

9. Late Fall N

10. Mowing at the highest optimum height

11. Mowing at the lowest height

12. Regular mowing

13. Scalping

14. Skipping a mowing

15. Rolling greens instead of mowing

16. Aerification, verticutting, topdress

17. Growth regulators

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ps</td>
<td>- Rd</td>
<td>= G + S</td>
<td></td>
<td>Ps</td>
<td>Rd</td>
<td>= G</td>
<td>+ S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>←</td>
<td>↑</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>←</td>
<td>↑</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>←</td>
<td>↑</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>←</td>
<td>↑</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>←</td>
<td>↑</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>←</td>
<td>↑</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>←</td>
<td>↑</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>←</td>
<td>↑</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>←</td>
<td>↑</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>←</td>
<td>↑</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Growth Chamber Study (U Minn)

Growth chamber methods

- Three grass species (creeping bentgrass, Kentucky bluegrass, annual bluegrass)
- Four N rates (0, 0.5, 1, 2 lbs N/M)
- Three temperature regimes (Sept. 15, Oct. 15, Nov. 15)
- Three replications, two growth chamber runs

Growth Chamber Results: N Uptake

Field Studies
Wisconsin and Minnesota

Applied 0.5 or 1.0 lbs N/1000 in Sep, Oct, or Nov and monitored uptake through the following June.

Total fertilizer N uptake: Fall - June

- September 15th:
 80% of fertilizer N applied was taken up
 86% recovered 28 days after application
- October 15th:
 19% of fertilizer N applied was taken up
 79% recovered 28 days after application
- November 15th:
 11% of fertilizer N applied was taken up
 61% recovered 28 days after application
Conclusions

- Fall N does not stimulate deeper rooting that fall
- Fall N uptake potential is low in fall, and even lower in spring
- Color can be enhanced in fall/winter/spring with much smaller amounts of N

Why? Water uptake

- Plant depends on water to move nutrients to root surface
- 90% of water in plant is used for cooling
- Low cooling need in fall = low water uptake
- How does this work in other climates with longer falls and extended green and growth than in MN or WI?
- Maximum rooting = maximum water uptake = maximum cooling = maximum nutrient uptake, etc. etc. etc.

Zac Reicher
http://turf.unl.edu/