

In 1932, a fruit farmer, Orton Englehardt, invented the impact sprinkler. The "TURBO" Putting Green Sprinkler

USGA Method of Putting Green Construction • Original Specifications in 1960 • Since then, this method has been regularly researched, improved and amended • Other methods • California Style (1990)

- Purr-wick (1966)
- Dutch Green (1960-70; primarily the Netherlands)
- Native soil or push-up greens

11

9

Physical properties of sand-based root zones over time *1996-2005* University of Nebraska-Lincoln

19

Objectives

- Develop a better understanding of the impact of grow-in procedures on putting green establishment and performance.
- Investigate temporal changes in the soil physical properties of USGA putting greens.

20

Materials and Methods

- Field experiment initiated in 1997
- Greens constructed every year for four years
- Two rootzone mixtures - 80:20 Sand:Peat (v:v)
- 80:15:5 Sand:Peat:Soil (v:v:v)
- Two establishment treatments
 - Accelerated
 - -Controlled

21

22

- 2004 rootzone samples taken below mat layer from each soil treatment and sent to Hummel labs for Quality Control Test (24 total samples)
- Tested against original quality control test (z-score).

39

- Based on *in situ* green testing K_{SAT} decreased, and surface moisture increased, over time due to organic matter accumulation above the original rootzone and increased fine sand content originating from topdressing sand
- Organic matter did result in positive agronomic change: pH, CEC, nutrient holding capacity, microbial stability and amount

Sand – particle size

Size

- Medium (0.5 0.25 mm) sand has very rapid drainage
- Very Fine Sand, Silt and Clay
 - increase water retention and stability of sand
 - but slow water flow (drainage)
 - Maximum 10% fines, less is usually preferable if drainage is critical

		Q ()
Particle Name	Diameter (mm)	Recommendation (by weight)
Fine Gravel	2 – 3.4	Not more than 10% total,
Very Coarse Sand	1-2	maximum of 3% fine gravel
Coarse Sand	0.5 – 1	Minimum of 60%
Medium Sand	0.25 – 0.5	
Fine Sand	0.15 - 0.25	Not more than 20%
Very Fine Sand	0.05 - 0.15	Not more than 5%
Silt	0.002 - 0.05	Not more than 5%
Clay	< 0.002	Not more than 3%
Total Fines	very fine sand + silt + clay	Less than or equal to 10%

Particle Name	Diameter (mm)	Recommendation (by weight)
Fine Gravel	2 – 3.4	Not more than 10% total,
Very Coarse Sand	1-2	maximum of 3% fine gravel
Coarse Sand	<mark>0.5 – 1</mark>	Minimum of 60%
Medium Sand	<mark>0.25 – 0.5</mark>	
Fine Sand	0.15 - 0.25	Not more than 20%
Very Fine Sand	0.05 - 0.15	Not more than 5%
Silt	0.002 - 0.05	Not more than 5%
Clay	< 0.002	Not more than 3%
Total Fines	very fine sand + silt + clay	Less than or equal to 10%

Particle Size Distribution for Drainage						
Particle Name	Diameter (mm)	Recommendation (by weight)				
Fine Gravel	2 – 3.4	Not more than 10% total,				
Very Coarse Sand	1-2	maximum of 3% fine gravel				
Coarse Sand	<mark>0.5 – 1</mark>	Minimum of 60%				
Medium Sand	<mark>0.25 – 0.5</mark>	winimum of 60%				
Fine Sand	0.15 - 0.25	Not more than 20%				
Very Fine Sand	0.05 - 0.15	Not more than 5%				
Silt	0.002 - 0.05	Not more than 5%				
Clay	< 0.002	Not more than 3%				
Total Fines	very fine sand + silt + clay	Less than or equal to 10%				

Root Zone	Very				Very
Vixes	<u>Coarse</u>	Coarse	Medium	Fine	Fine
			%		
Coarse	6	61	32	1	0
Coarse-medium	5	48	38	7	1
Medium	6	26	49	17	2
Medium-fine-1	4	11	53	26	6
Medium-fine-2	0	7	56	30	7
USGA rec	≤ 10	≥ 6	50	≤ 20	≤ 5

		Air-filled	Capillary
Root Zone Sand	K _{sat}	Porosity	Porosity
	in / hr		%
Coarse	37	35	7
Coarse-Medium	30	27	13
Medium	25	20	20
Medium-Fine-1	16	17	25
Medium-Fine-2	24	14	29
LSD _{0.05}	3	1.6	1.2

Feb	2025
	2023

Pre-				
Root Zone Sand	Construction	1999	2001	2004
	inc	hes per	hour	
Coarse	37	32	56	96
Coarse-Medium	30	32	43	48
Medium	25	27	31	35
Medium-Fine-1	16	24	22	22
Medium-Fine-2	24	24	22	24
LSD _{0.05}	3	4	4	

Tinches per hour Coarse 96 7 Coarse-Medium 48 5 Medium 35 4 Medium-Fine-1 22 2 Medium-Fine-2 24 2		Field Core	Field
Coarse 96 7 Coarse-Medium 48 5 Medium 35 4 Medium-Fine-1 22 2 Medium-Fine-2 24 2	Root Zone Sand	K _{sat}	Infiltration
Coarse-Medium 48 5 Medium 35 4 Medium-Fine-1 22 2 Medium-Fine-2 24 2		inches p	er hour
Medium 35 4 Medium-Fine-1 22 2 Medium-Fine-2 24 2	Coarse	96	7
Medium-Fine-1 22 2 Medium-Fine-2 24 2	Coarse-Medium	48	5
Medium-Fine-2 24 2	Medium	35	4
	Medium-Fine-1	22	2
	Medium-Fine-2	24	2
	LSD _{0.05}	6	2
		DAI 2	100 M

Root Zone Sand	Hand Water	Air-filled Porosity	Capillary Porosity	
	inches	9	%	
Coarse	8.8	34.5	7.3	
Coarse-Medium	7.4	26.8	13.3	
Medium	5.4	19.5	20.4	
Medium-Fine-1	3.1	17.1	25.0	
Medium-Fine-2	3.4	14.2	28.5	
LSD _{0.05}	1.6	1.6	1.2	

Total Hand Water fro	om May to Oct	ober 2001		
Root Zone Sand	Hand Water	Turf 1999	Quality 2000	-
	inches	9 =	best	
Coarse	8.8	5.7	5.6	
Coarse-Medium	7.4	6.7	6.8	
Medium	5.4	7.0	7.0	
Medium-Fine-1	3.1	7.9	8.0	
Medium-Fine-2	3.4	7.8	7.5	
LSD _{0.05}	1.6	0.4	0.4	

Amendment Treatments (rate - % by volume) Axis 10% Sand Greenschoice 10% Soil 2.5, 5 and 20% Soil 5% subgrade Soil 100% Isolite 10% Profile 10 and 20% ZeoPro 10% ZeoPro 10% surface 4" SAND Sphagnum 5, 10 and 20% Reed Sedge 5 and 10% Irish peat 10 and 20% ZeoPro + micros 10% surface 4" AllGro compost 10% AT Sales sand + AllGro compost 20% 74 75

Straight Sand (un-amended) Root Zones

- OM remains very low (probably too low) over time
- Results in more frequent and intensive inputs to maintain proper plant nutrition and avoid drought stress.

76

- Provided good to excellent turf performance (as good or better than peat)
- ... but identification of a high quality compost can be difficult and is critical to success
- <u>http://www.compostingcouncil.org/programs/</u>

77

Inorganic Amendments

- Greater nutrient retention than 100% sand
- Greater water availability but not a dramatic improvement in carrying capacity (days between irrigations)
- Subtle improvement in turf quality
- Cost of these materials is significant, cost-benefit?

81

82

83

Straight Sand (un-ameneded) Root Zones

Popular with some architects, builders and superintendents.

- Ease of construction
- Initial cost savings no blending and less testing
- Reputed to be useful in managing the accumulation of organic matter

Straight Sand (un-ameneded) Root Zones

Advocates suggest organic matter (OM) accumulation will "amend" the sand over time

i.e., do not need to amend the sand it will happen anyway.

OM accumulates as sand greens age

93

94

95

Organic Matter Management Study

Objectives

- 1. Determine if conventional hollow tine is more effective than solid tine aerification at managing organic matter accumulation
- 2. Determine if venting methods are effective at managing OM accumulation

Treatments				
Tine Treatment	Venting Treatment			
None	None			
2X Hollow tine	PlanetAir			
2x Solid tine	Hydroject			
	Bayonet tine			
	Needle tine			

- No differences between green age except for higher % in older green
- No differences among venting methods
- No interactions with solid/hollow/none

OM Data Analysis Year 2

- No differences between green age except for higher
 % in older green
- No differences among venting methods
- No interactions with solid/hollow/none
- No differences among solid/hollow/none

105

106

104

What these data do/don't suggest

- Cultivation, when topdressing quantity was equal, was insignificant as a means to control OM
- However, a superintendent must use whatever tools they have at their disposal to ensure sand is making it into the profile and not the mower buckets

110

Project Objective

National Survey

 Determine cause and effect relationship among maintenance practices and their interactions relative to surface OM accumulation

111

118

119

Survey Summary

- None of the variables collected, by themselves, or in combination with others, *predicted_*OM
- Courses using >18 cubic ft*/M of topdressing with or without "venting" had lower OM
- Of the <u>known</u> cultivars, no differences in OM were evident

*1 ft³ = 100 lbs of dry sand; yd³ = 2700 lbs

Sand Pa	article Size (1	-mm and 0.5-mm sands)
Particle Name	Diameter (mm)	
Fine Gravel	2-3.4	Dera Longen and the second
Very Coarse Sand	1-2	
Coarse Sand	0.5 – 1	
Medium Sand	0.25 – 0.5	
Fine Sand	0.15 – 0.25	
Very Fine Sand	0.05 – 0.15	
Silt	0.002 - 0.05	
Clay	< 0.002	
		Photo: TJ Laws

129

Research Objectives:

- 1. Effects of topdressing with sand lacking coarse particles
- 2. Does core cultivation and backfilling holes with medium-coarse sand offset any negative effects of topdressing with sands lacking coarse particles?

130

		Factors in the	Exporimont		
Treatment		Topdressing Rate during		e/year; May & Oct)	Annual Quantity of
No.	Sand Size	Growing Season	Hollow Tine	Backfill / Topdress	Sand Applied
		lbs. / 1,000-sqft.		lbs. / 1,000-sqft.	lbs. / 1,000-sqft.
1	Medium-coarse	50	None	400	1,300
2	Medium-coarse	50	Core + Backfill	600	1,700
3	Medium-coarse	100	None	400	1,800
4	Medium-coarse	100	Core + Backfill	600	2,200
5	Medium-fine	50	None	400	1,300
6	Medium-fine	50	Core + Backfill	600	1,700
7	Medium-fine	100	None	400	1,800
8	Medium-fine	100	Core + Backfill	600	2,200
9	Fine-medium	50	None	400	1,300
10	Fine-medium	50	Core + Backfill	600	1,700
11	Fine-medium	100	None	400	1,800
12	Fine-medium	100	Core + Backfill	600	2,200
13	None	0	None	0	0
14	None	0	Core + Backfill	600	1,200

132

	2-1 mm	1-0.5 mm	0.5-0.25 mm	0.25-0.15 mm	0.15-0.05 mm
Sand Size	Very Coarse	Coarse	Medium	Fine	Very Fine
		% (1	by weight) reta	iined	
Medium-coarse (1-mm)	0	30	60	10	< 1
Medium-fine (0.5-mm)	0	0	74	24	2
Fine-medium	0	4	27	48	21
	C. A.				
A COLORINA POR			No 1	A	
	1.21			- Tr	1
	-	-			and the second second
and the second second	Contra a la contra de	and the second second	A STATE	The second second second	

		Factors in th	e Experiment		
Treatment		Topdressing Rate during	Cultivation (twice	e/year; May & Oct)	• Annual Quantity of
No.	Sand Size	Growing Season	Solid Tine %-inch	Backfill / Topdressing	Sand Applied
		lb / 1,000 sq ft		lb / 1,000 sq ft	lb / 1,000 sq ft
1	Medium-coarse	50	None	400	1,300
2	Medium-coarse	50	Solid Tine	600	1,700
3	Medium-coarse	100	None	400	1,800
4	Medium-coarse	100	Solid Tine	600	2,200
5	Medium-fine	50	None	400	1,300
6	Medium-fine	50	Solid Tine	600	1,700
7	Medium-fine	100	None	400	1,800
8	Medium-fine	100	Solid Tine	600	2,200
9	Fine-medium	50	None	400	1,300
10	Fine-medium	50	Solid Tine	600	1,700
11	Fine-medium	100	None	400	1,800
12	Fine-medium	100	Solid Tine	600	2,200
13	None	0	None	0	0
14	None	0	Solid Tine	600	1,200

134

Cultivation Factor

- Solid tine twice/year (May and Oct)
- Holes backfilled with medium-coarse sand at 600 lb / 1,000 sq ft
- At same time, non-cored plots topdressed with respective sand size at 400 lb / 1,000 sq ft

136

		Infiltration Rate	e
	1 st round	2 nd round	3 rd round
Source of Variation			
Sand Size (SS)	***	***	***
Topdress Rate (TR)	ns	ns	ns
SS*TR	ns	ns	ns
Core Cultivation (CC)	***	***	***
SS*CC	ns	ns	*
TR*CC	ns	ns	ns
SS*TR*CC	ns	ns	ns

ANOVA of Mat-lay Physical Propertie	'		Í.		Contraction of the second	F	
	Pore	Size Distrib	oution	Sa	nd Particle	Size Fract	ion
	Total	Air filled	Capillary	Very	Coarse +		Very
	IOLAI	All-Illieu	Capillary	Coarse	Medium	Fine	Fine
Source of Variation							
Sand Size (SS)	*	***	***	ns	***	***	***
Topdress Rate (TR)	***	ns	***	**	ns	ns	ns
SS*TR	ns	ns	ns	ns	ns	ns	ns
Core Cultivation (CC)	***	***	***	**	***	***	***
SS*CC	ns	*	*	*	***	***	***
TR*CC	*	ns	ns	ns	ns	ns	ns
SS*TR*CC	ns	ns	ns	ns	ns	ns	ns

153

154

155

 In the absence of HTC:
 Fine-medium sand immediately and substantially increased VWC, resulting in a wetter and softer surface compared to surfaces topdressed with medium-coarse and medium-fine sands.

When HTC was employed:

- The impact of sand size was reduced, and, in fact, there were no differences in VWC between the medium-coarse and medium-fine sands.
- However, after 4 years, HTC could not fully offset the effect of topdressing with fine-medium sand on surface wetness.
- The effect of topdressing rate also became dependent on cultivation after 4 years. The lower topdressing rate led to a wetter surface than the higher topdressing rate in the absence of cultivation, but not when HTC was applied.

Conclusions

HTC effectively dried and created firmer surfaces in the long run but also disrupted the turf surface, resulting in poorer turf quality throughout the season.

Better turf quality and higher NDVI (turf cover) on plots without cultivation corroborate superintendents' strong interest in reducing or eliminating HTC from their management programs.

More data coming on the impact of solid tine cultivation on creeping bentgrass putting green quality and surface characteristics.

New Trials

158

159

Two cultivation trials initiated on creeping bentgrass in 2023 to compare hollow tine and Distance

- 4. Volumetric water content at the 0- to 3-inch depth zone
- Dual-head infiltrometers 5.

Healing of tine holes

Residual sand after topdressing

Clegg soil hardness 6.

solid tine cultivation.

Evaluating: 1. Turf quality

2.

3.

- Ball roll distance GS3 7.
- 8. Trueness of ball roll – GS3
- 9. Smoothness of ball roll – GS3 10. Firmness - drop test with GS3

160

Ball roll characteristics on 20 Nov. 2023, 40 days after cultivation in Trial 8A. 7

USGA GS3 Device for Playability

- Trueness
- Smoothness
- Firmness

Ball roll smoothness 19 to 33 days after cultivation on 18 Oct. 2023 in

171

172

What these data do/don't suggest

- * Cultivation, when topdressing quantity was equal, was insignificant in affecting OM
- Superintendents, however, must use whatever tools they have at their disposal to ensure sand is making it into the profile and not the mower buckets

Treatment	% OM 0-4	"
Check	4.5	а
Hollow	3.7	b
Needle	3.1	с
DryJect (3x3)	2.7	d
Needle + Hollow	2.3	d
DryJect (3x2)	2.3	d
Needle + Solid	2.3	d
Solid	2.2	d

 No differences among depths
 Dilution only
 Dryject and needle tine were least surface disruptive
• Data is preliminary

Data Collection Organic matter, 3-5 days after treatment directly over aeration hole Infiltration approx. weekly NDVI (cover measured digitally) every few days Firmness Surface Moisture TDR 03'; 3-6" Data Collection -Gall roll -Ball roll -Smoothness -Trueness -Tr

Fall 2023	Data I	Resul	ts (<.	05 =	statis	tical	diffe	rence)
ANOVA	10-Oct	18-Oct	21-Oct	26-Oct		9-Oct	16-Oct	25-Oct
Effect	NDVI-1	NDVI-2	NDVI-3	NDVI-4	%OM	Infil-1	Infil-2	Infil-3
Topdressing (TD)	0.1161	0.5583	0.6987	0.2785	<mark>0.0466</mark>	0.3444	0.188	0.1061
Tine TRT	<mark><.0001</mark>	<mark>0.0049</mark>	<mark>0.0353</mark>	0.114	<mark><.0001</mark>	<mark><.0001</mark>	<mark><.0001</mark>	<mark><.0001</mark>
TD*TRT	0.0761	0.925	0.2796	0.1175	<mark>0.0107</mark>	0.1	<mark>0.0076</mark>	0.4673

Fall 2023 GS3 D	ata Res	ults (<u><</u> .	05 = statistical difference)
Ball Roll	1 WAT		
Effect	F Value	Pr > F	
TD	5.5	0.1437	
TRT	4.44	<.0001	
TRT*TD	2.85	0.0027	
0	es than sar Ill roll thai	me diam	roll more for ½" or eter solid tines. Solid lent hollow tines. Effects

Fall 2023 GS3 Da	ata Resu	lts (<u><</u> .0	5 = statistical difference)
Trueness	1 WAT		
Effect	F Value	Pr > F	Results were similar
TD	0.16	0.7316	and NS 2 & 3 WAT
TRT	1	0.4689	
TRT*TD	0.66	0.8037	
Smoothne	ss 1 WAT		
Effect	F Value	Pr > F	
TD	0.33	0.6245	
TRT	0.64	0.8234	
TRT*TD	0.83	0.636	

Early Results

- Topdressing before aeration, even with <u>some</u> hollow tines will incorporate more sand
- Higher and prolonged infiltration greater for hollow tines $\not\!$ or larger than any solid tines
- Viper tines had greatest increase in infiltration over time than any other tine
- Uninterrupted use of solid tines over years needs to be rethought in infiltration is considered
 - Venting will help
 - Occasional hollow tine will help

206

Spring 2024 Results

- Cumulative effect of 3 cultivation events
- Similar outcomes to Fall 2023
- "Better" GS3 data

207

Topdressing	OM
efore	3.02 A
fter	3.27 B

208

219

220

221

It matters how you manage the accumulating thatch/mat layer

- Cultivation has a significant impact. At minimum, use practices that help incorporate sand.
- Topdressing is critical. Can use a fine sand (0.25-5 mm) to ensure enough sand will be applied during summer, in combo with a medium (< 1 mm) with more aggressive aerification (core, solid or injection). Avoid sands of < 0.15.

It matters how you manage the accumulating thatch/mat layer Topdressing before cultivation increases sand incorporation and decreases OM

- Larger diameter hollow (>0.5") tines increase sand incorporation, infiltration and surface uniformity disruption; surface disruption duration is much shorter than infiltration benefit
- Solid tines decrease OM and infiltration more so than hollow tines over time, care must be taken to include venting or occasional hollow tine cultivation

<section-header>

225

Thank you and best wishes for 2025!