

Historic	al Perspe	<i>ctive</i> : USGA Green Section
	Record a	and Precursors 1921-2024
Key Word search		First mention; First "modern" mention
 Topdressing 	473 hits	• 1921; 1951
 Aeration 	187 hits	• 1921; 1945
 Organic Matter 	146 hits	• 1921; 1952
 Aerification 	117 hits	• 1927; 1952
 Aerify 	115 hits	• 1927; 1952
 Compaction 	112 hits	• 1921; 1921
Core	79 hits	• 1927; 1956
 Cultivation 	74 hits	• 1923; 1945
Coring	47 hits	• 1963; same
 Tine(s) 	42 hits	• 1930; 1945
- (-)		1990, 1949

- Prosperous economic times allowed recreational spending.
- Returning veterans looked for leisure activities.
- Golf on TV showcased the sport to wider audiences.
- Golf became part of corporate culture for networking and deals.
- New technologies and equipment made golf easier for the average player.
- Retirees had time to take up the game.
- Golf became part of suburban lifestyles and country club status.

......increase in traffic, participants and play led to the 1960 release of the USGA recommendations for green construction

Organic Matter Management Study

Objectives

- 1. Determine if conventional hollow tine is more effective than solid tine aerification at managing organic matter accumulation
- 2. Determine if venting methods are effective at managing OM accumulation

Treatments

None PlanetAir
PlanetAir
Hydroject
Bayonet tine
Needle tine

11

All treatments received the same topdressing quantity (22 ft³/M*) but different frequency

Equilibrated to identify differences of the practices in question

*1 ft³ = 100 lbs of dry sand; yd³ = 2700 lbs

OM Data Analysis Year 1

- No differences between green age except for higher % in older green
- No differences among venting methods
- No interactions with solid/hollow/none

14

Effect of Tines on OM after 1 yr

16

OM Data Analysis Year 2

- No differences between green age except for higher % in older green
- No differences among venting methods
- No interactions with solid/hollow/none
- No differences among solid/hollow/none

17

22

			Time after core creation (weeks)						
		2	4	6	8	10	12	14	16
Putting Green	Depth		Organic Matter Reduction (%)						
9 yr	3"	79	73	70	71	69	66	67	66
	6"	71	64	60	63	59	56	57	56
5 yr	3"	73	66	61	62	62	62	61	59
	6"	66	56	51	51	52	52	51	49

23

What these data do/don't suggest

- Cultivation, when topdressing quantity was equal, was insignificant as a means to control OM
 However, a superintendent must use whatever tools they have at their disposal to ensure sand is making it into the profile and not the mower buckets

28

Project Objective

► National Survey

 Determine cause and effect relationship among maintenance practices and their interactions relative to surface OM accumulation

29

2006/07/08 Samples Sixteen states Nebraska, South Dakota, Iowa, Wyoming, Colorado, Washington, Wisco Illinois, New Jersey, Minnesota, New Mexico, Montana, Hawaii, Californi Connecticut, Arkansas. 117 golf courses sampled More than 1600 samples

34

35

A Standard Method for Measuring Putting Green Surface Organic Matter

Survey Summary

- None of the variables collected, by themselves, or in combination with others, predicted OM
- Courses using >18 cubic ft*/M of topdressing with or without "venting" had lower OM
- Of the known cultivars, no differences in OM were evident

*1 ft³ = 100 lbs of dry sand; yd³ = 2700 lbs

38

39

"Advocates of solid-tine aeration report that they get the same benefits of thatch and organic matter reduction with less labor for the collection and removal of aeration cores. Whether you pull a core or use solid tines, it's all about sand volume and the ability to dilute organic matter in the rootzone. Regardless of the method, the most important factor is filling the hole with sand. It's all about dilution, and if you can do that with less of a mess and less labor, then solid-tine aeration is a viable alternative."

From: https://www.usga.org/content/usga/home-page/course-care/regional-updates/central-region/2018/solid-tine-aeration-order-of-operations.html

Research Need (2004)

• Comprehensive evaluation of sand quantity, particle size, sampling protocol and cultivation methods

44

45

Treatment	% OM 0-4	"
Check	4.5	а
Hollow	3.7	b
Needle	3.1	с
DryJect (3x3)	2.7	d
Needle + Hollow	2.3	d
DryJect (3x2)	2.3	d
Needle + Solid	2.3	d
Solid	2.2	d

,	No differences among
	depths

- Dilution only
- Dryject and needle tine were least surface disruptive
- Data is preliminary

47

Fall 2023	Data I	Resul	ts (<.	05 =	statis	tical	diffe	rence)
ANOVA	10-Oct	18-Oct	21-Oct	26-Oct		9-Oct	16-Oct	25-Oct	
Effect	NDVI-1	NDVI-2	NDVI-3	NDVI-4	%0M	Infil-1	Infil-2	Infil-3	
Topdressing (TD)	0.1161	0.5583	0.6987	0.2785	<mark>0.0466</mark>	0.3444	0.188	0.1061	
Tine TRT	<mark><.0001</mark>	<mark>0.0049</mark>	<mark>0.0353</mark>	0.114	<mark><.0001</mark>	<mark><.0001</mark>	<.0001	<mark><.0001</mark>	
TD*TRT	0.0761	0.925	0.2796	0.1175	<mark>0.0107</mark>	0.1	<mark>0.0076</mark>	0.4673	

\sim	л
n	4
0	

Fall 2023 GS3 D	ata Res	ults (<u><</u> .	05 = statistical difference)
Ball Roll	1 WAT		
Effect	F Value	Pr > F	
TD	5.5	0.1437	
TRT	4.44	<.0001	
TRT*TD	2.85	0.0027	
TD before aerificati greater hollow tine	ion increa s than sai	sed ball me diam	roll more for ½" or eter solid tines. Solid

greater hollow tines than same diameter solid tines. Solid tines had higher ball roll than equivalent hollow tines. Effects were less evident 2 WAT.

Fall 2023 GS3 Dat	ta Resul	lts (<u><</u> .0	5 = statistical difference)
Trueness 1	WAT		
Effect	F Value	Pr > F	Results were similar
TD	0.16	0.7316	and NS 2 & 3 WAT
TRT	1	0.4689	
TRT*TD	0.66	0.8037	
Smoothness	1 WAT		
Effect	F Value	Pr > F	
TD	0.33	0.6245	
TRT	0.64	0.8234	
TRT*TD	0.83	0.636	

Early Results

- · Lots of stuff going on
- Topdressing before aeration, even with <u>some</u> hollow tines will incorporate more sand
- Higher and prolonged infiltration greater for hollow tines ½" or larger than any solid tines
- Viper tines had greatest increase in infiltration over time than any other tine
- Uninterrupted use of solid tines needs to be rethought

Spring 2024 Results

- Cumulative effect of 3 cultivation events
- Similar outcomes to Fall 2023
- "Better" GS3 data

Core Cultivation of a Putting Green with Hollow and Solid Tines (1993, MSU) J. A. Murphy, P. E. Rieke, A. E. Erickson

https://doi.org/10.2134/agronj1993.00021962008500010001x

- 'Penneagle' creeping bentgrass loamy sand putting green
- hollow (HTC) or solid (STC) tines for 3 years
- · treatments were applied at 2 soil moistures (moist or wet)
- Infiltration and air porosity were 49 and 21% greater, with HTC vs STC.
- wet soil cultivation reduced infiltration 31% compared to moist soil cultivation.
- HTC lowered the organic matter fraction of the thatch/mat layer, but increased total organic matter vs STC.
- STC exhibited the potential for development of a cultivation pan.

Research data from others 77

Effects of Core Cultivation Tine Entry Angle on Golf Putting Greens

DOI: https://doi.org/10.21273/HORTTECH.16.2.0265

Christian M. Baldwin, Haibo Liu, Philip Brown (Clemson University, 2006)

USGA Ultradwarf Bermudagrass Putting Green Properties as Affected by Cultural Practices, J. H. Rowland, J. L. Cisar, G. H. Snyder, J. B. Sartain, A. L. Wright (2009, UF) https://doi.org/10.2134/agronj2009.0154

Accumulation of organic matter (OM) attributes and the soil surface (mat OM) and below (soil OM) can negatively affect putting green performance characteristics. The objective of this study was to evaluate cultural practices for control of OM and their effects on performance characteristics of a mature, USGA-specified ultradwarf bermudagrass [*Cynodon dactylon* (L) Pers. × *C. transvaalensis* Burt Davy] green in a subtropical climate. Two ultradwarf cultivars, "Iffeagee' and 'Champion', were subjected to hollow time aerification (HTA) 1, 2, or 3 times yr⁻¹, verticutting (VC) 3 times yr⁻¹, solid time aerification (STA) 5 times yr⁻¹, and no treatment (control) for two consecutive years. Cultivars and treatments were arranged in a split-plot, randomized complete block design. Although mat OM depth was similar among treatments, concentration was reduced after 2 yr by VC, HTA 2 times yr⁻¹, and HTA 3 times yr⁻¹. Solid TA(5 times yr⁻¹) and hollow TA(2 and 3 times yr⁻¹) reduced soil OM concentration compared with the control. Since VC also provided the highest turfgrass quality, firmest surface, least mower scalping, and least localized dry spots (LDS), it proved to be the best cultural practice tested, particularly since HTA 3 times yr⁻¹ and and increased LDS. Tiffeagle was the better performing cultivar, as it had higher quality and less mower scalping.

80

Applied Turfgrass Science (2011, Texas A&M) Charles H. Fontanier, Kurt Steinke, James C. Thomas, Richard H. White https://doi.org/10.1094/ATS-2011-1201-01-RS (fee for full print-out)

- hollow-tine aeration is disruptive
- thatchy, mature 'Tifeagle,' 'Tifdwarf,' and 'Mini-Verde' USGA putting green
- compared effects of small diameter tine core aeration to venting aeration at three frequencies, *plots did not receive topdressing sand during the study*
- venting aeration alone may not be an effective practice for thatch management or improving water infiltration if substantial undiluted organic matter layers exist.

81

				Spacing	Depth	Width	Length	Surface area	Surface area impacted
	Treatment×	Symbol	Timing interval		(cr	n)		impacted (%)	annually (%)
	Control	NC	-	-	-	1	-	-	-
<u>Planet Air</u>	Venting aeration	V1	Monthly	5.1	10.2y	0.32z	3.8z	2.1	7.4-9.5
	Venting aeration	V2	Biweekly	5.1	10.2	0.32	3.8	2.1	14.7-18.9
	Venting aeration	V4	Weekly	5.1	10.2	0.32	3.8	2.1	29.4-37.8
	Hollow tine aeration	нт	Three weeks	5.1	10.2	0.64y	-	2.8	14.0-16.8
	Solid tine aeration	ST	Three weeks	5.1	10.2	0.64	-	2.8	14.0-16.8
	^x Treatments ^y Manufactur ^z In-field me	s applied rer's spe asureme	for 18 we cified tine ents of hol	eeks in 2 or knife es.	008 an dimen	nd 14 w sions.	/eeks in	2009.	

82

	Tifeagle	Tifdwarf	Mini-verde					
Treatment×		Turf Quality						
v1y	6.0 abz	5.5 ab	6.2 a					
V2	5.3 bc	5.3 ab	6.1 a					
V4	4.4 d	5.0 bc	4.3 a					
HT	4.9 cd	4.2 c	4.9 a					
ST	5.7 b	4.8 bc	5.3 a					
NC	6.6 a	6.1 a	6.6 a					
HSD _{0.05}	0.7	0.9	NS					
^x Treatments we 2009. ^y V1, V2, and V4 HT = hollow-ti cultivated cont	re applied from May to = PlanetAir venting as ne core aeration; ST = rol.	September 2008 ar eration 1×, 2×, and solid-tine core aera	nd May to August 4× per month; tion; NC = Non-					

	Thatch-mat accumulation (mm/year)			Organi	Organic matter density (mg/cm ³)			Relative root density (mg/cm ³)		
nentw	Te×	Td	Mv	Те	Тd	Mv	Те	Тd	Mv	
V1y	8.3 az	1.6 a	8.9 a	20.6 a	17.4 a	15.9 a	0.88 a	1.36 a	0.87 a	
V2	2.2 a	5.9 a	3.9 a	21.6 a	19.9 a	20.2 a	0.99 a	1.76 a	0.78 a	
V4	5.0 a	2.7 a	9.5 a	15.5 a	16.1 a	19.1 a	0.87 a	1.73 a	0.64 a	
НT	6.4 a	4.8 a	2.6 a	18.7 a	19.3 a	21.3 a	0.96 a	1.57 a	0.86 a	
ST	3.7 a	4.9 a	5.7 a	19.1 a	17.2 a	18.2 a	1.13 a	1.57 a	0.74 a	
NC	5.9 a	4.3 a	6.3 a	23.7 a	19.1 a	18.8 a	1.28 a	1.56 a	1.28 a	
* Trea 2009 * Te = y V1, V HT = cultiv z Mean signi	tments w `Tifeagle' (2, and V- hollow-t vated con s followe ficantly d	'; Td = `T 4 = Plane ine core itrol. d by the ifferent (ed from ifdwarf'; etAir ven aeration; same let Tukey's	May to S Mv = 'M ting aera ; ST = so ter in a e HSD _{0.05})	ieptembo lini-verd ation 1×, blid-tine given col	er 2008 ; e'. . 2×, and core aer umn wit	and May I 4× per ation; N hin a cu	to Augu month; C = Non tivar are	- e not	

		VWC (76 mm)	VWC (120 mm)	~
Cultivar	Treatment×	(m ³ /m ³)		(cm/h)
Tifeagle	V1y	24.9dz	19.3c	23.6ab
	V2	27.1ab	20.8a	16.7b
	∨4	26.7bc	20.6ab	17.8ab
	нт	27.6a	21.0a	19.8ab
	ST	27.4a	21.0a	29.5a
	NC	26.1c	20.4b	26.1ab
	HSD _{0.05}	0.6	0.4	12.1
Tifdwarf	V1×	26.6b	20.9bc	26.3ab
	V2	26.8b	21.3b	23.4abc
	V-4	20.10	21.90	11.00
	нт	26.0c	20.3d	33.0a
	ST	24.4d	19.2e	29.3a
	NC	26.6b	20.8c	15.4bc
	HSD _{0.05}	0.5	0.4	13.7
Mini-verde	V1×	23.4e	18.0d	28.4a
	V2	28.0b	21.6a	19.0ab
	V4	28.7a	21.6a	12.2b
	HT	25.1d	19.2c	30.2a
	ST	26.8c	20.1b	28.7a
	NC	23.9e	18.2d	26.0a
	HSD _{0.05}	0.6	0.4	12.8

Impact of Dry-injection Cultivation to Maintain Soil Physical Properties for an Ultradwarf Bermudagrass Putting Green (2016, MSU) JM. Craft, C M Baldwin, WH. Philley, JD McCurdy, BR Stewart, M Tomaso-Peterson, EK Blythe doi: 10.21273/HORTSCI11018-16

"It can be concluded that DI would be best used in combination with HT 1.3 or 0.6 cm diameter tine sizes to improve soil physical properties; however, the DI + HT 0.6 cm diameter tine size treatment resulted in minimum surface disruption while stilli improving soil physical properties compared with the noncultivated control"

87

Treatment	Aerification ^z	Tine sizey	Dry-injection ^x frequency
Noncultivated control	_		
HT 1.3	HT	1.3	
HT 0.6	HT	0.6	
DI 5	_	_	5 ^w
HT 1.3 + DI 2	HT	1.3	2
HT 0.6 + DI 5	HT	0.6	5
HT 0.6 + DI 4	HT	0.6	4
HT 0.6 + DI 2	HT	0.6	2
² All aerification (hollow-tim ³ The 1.3 and 0.6 cm treatmo ⁴ Dry-injection nozzles were ⁴ Total number of application 2014, 2 July 2014, 8 Aug. 2	e) treatments were applied onts were set to a depth spaced at 7.6 cm and set ns over the 2-year study 014, 6 June 2015, and 1	ied once a year on 2 J of 7.6 cm with 2.5 cm et to a 12.6 cm depth. period. Dry-injection 7 July 2015.	uly 2014 and 17 July 2015. 1 spacing. 1 treatments occurred on 3 June

 Table 2. Percent recovery and chlorophyll index in July on a 'MS-Supreme' ultradwarf bermudagrass putting green following various aerification and dry-injection cultivation treatments in Starkville, MS, from 1 June to 31 Aug.

 Teamment '5 DAT' 8 DAT
 Chlorophyll index'

 (0-100)
 Chlorophyll index'

 Teamment '5 DAT' 8 DAT
 12 DAT
 15 DAT
 Chlorophyll index'

 Non-online control
 100 a'
 284 a
 2000

 Teatment '5 DAT'
 15 DAT
 15 DAT
 24 ab
 274 ab
 201

 Teatment '5 70 b
 78 be
 273 ab
 292

 TH 0 (a + D12
 67 b'
 70 b'
 286

 17 bot colspan="2">20 bot 100 a
 270 ab
 284

 'A do b 100% linear scale was used to estim

89

	0 to 7.6 cm depth	7.6 to 10.1 cm dept	
	14 DAT ^y	1 Oct. 2015	
Treatment	cm·hr ⁻¹		
Noncultivated control	6.50 b ^x	144 b	
HT 1.3	25.83 a	196 ab	
HT 0.6	14.10 ab	171 ab	
DI 5 ^w	12.66 ab	211 ab	
HT 1.3 + DI 2	19.80 ab	192 ab	
HT 0.6 + DI 5	11.60 b	178 ab	
HT 0.6 + DI 4	13.80 ab	260 a	
HT 0.6 + DI 2	16.60 ab	264 a	
² HT = hollow tine; DI = dry inje ³ DAT = days after treatment. ³ Means within each column foll. Shaffer-simulated test (P ≤ 0.10 ⁴ Values following DI represent th injection applications occurred on	ction; $1.3 = 1.3$ cm tine diameter; $0.6 =$ swed by the same letter are not signifi). e number of dry-injection applications o 3 June 2014, 2 July 2014, 8 Aug. 2014, 6	0.6 cm tine diameter. cantly different according to the over the 2-year study period. Dry June 2015, and 17 July 2015.	

- 3" depth
 - Thanks to Superintendent Peter Schmidt for loan

Thanks to Dan Parr, Midwest Turf & Irrigation for aerator transport and assistance.

Thanks to Superintendent Greg
 Jones for loan

