

In 1932, a fruit farmer, Orton Englehardt, invented the impact sprinkler.

9

10

2	-
,	5
~	_

Annual organic peat green	matter acc	cumulation in a	a sand/
Year 1	2	3	
0.65%	3.0%	6.0%	
USGA spec. ((by volume) (green construe organic matter	cted with 20%	

Materials and Methods

28

Change in Rootzone Particle Size Distribution

 All rootzones tested in 2004 showed increased proportion of fine sand (0.15 – 0.25 mm) with decreased proportion of gravel (> 2.0 mm) and very coarse sand (2.0 – 1.0 mm).

 Comprehensive evaluation of sand quantity, particle size, sampling protocol and cultivation methods

38

40

Organic Matter Management Study

Objectives

- 1. Determine if conventional hollow tine is more effective than solid tine aerification at managing organic matter accumulation
- 2. Determine if venting methods are effective at managing OM accumulation

Treatments		
Venting Treatment		
None		
PlanetAir		
Hydroject		
Bayonet tine		
Needle tine		

44

OM Data Analysis Year 1

- No differences between green age except for higher % in older green
- No differences among venting methods
- No interactions with solid/hollow/none

45

OM Data Analysis Year 2

- No differences between green age except for higher % in older green
- No differences among venting methods
- No interactions with solid/hollow/none
- No differences among solid/hollow/none

What these data do/don't suggest

- Cultivation, when topdressing quantity was equal, was insignificant as a means to control OM
- However, a superintendent must use whatever tools they have at their disposal to ensure sand is making it into the profile and not the mower buckets

50

52

2006/07/08 Samples

Sixteen states

 Nebraska, South Dakota, Iowa, Wyoming, Colorado, Washington, Wisconsin, Illinois, New Jersey, Minnesota, New Mexico, Montana, Hawaii, California, Connecticut, Arkansas.

117 golf courses sampled
More than 1600 samples

57

Survey Summary

- None of the variables collected, by themselves, or in combination with others, <u>predicted</u>OM
- Courses using >18 cubic ft*/M of topdressing with or without "venting" had lower OM
- Of the <u>known</u> cultivars, no differences in OM were evident

*1 ft³ = 100 lbs of dry sand; yd³ = 2700 lbs

Sand Particle Size (1-mm and 0.5-mm sands)

Particle Name	Diameter (mm)
Fine Gravel	2 – 3.4
Very Coarse Sand	1-2
Coarse Sand	0.5 – 1
Medium Sand	0.25 – 0.5
Fine Sand	0.15 – 0.25
Very Fine Sand	0.05 – 0.15
Silt	0.002 – 0.05
Clay	< 0.002

68

69

Research Objectives:

- 1. Effects of topdressing with sand lacking coarse particles
- 2. Does core cultivation and backfilling holes with medium-coarse sand offset any negative effects of topdressing with sands lacking coarse particles?

70

Conclusions (from Rutgers Data)

- Strong impact of <u>core cultivation</u> plus backfilling with medium-coarse sand: reduced organic matter and capillary porosity (water retention)
 - increased air-filled porosity
 - consistently drier playing surface
- Sand size effects depended on the level of core cultivation (interaction)
 - Medium-coarse and medium-fine sands
 - · similar at diluting organic matter and reducing surface water retention · topdressing with medium-fine sand caused a finer sand size in mat layer, which was corrected by core cultivation (holes backfilled with medium-coarse sand) Fine-medium sand
 - Greater surface water retention and reduced infiltration due to finer sand size and capillary porosity in mat layer
 - Core cultivation (holes backfilled with medium-coarse sand) reduced these effects; however, not completely due to the quantity of fine and very fine sand remaining above 30% (by weight) in the mat layer

What these data do/don't suggest

- Cultivation, when topdressing quantity was equal, was insignificant in affecting OM
- Superintendents, however, must use whatever tools they have at their disposal to ensure sand is making it into the profile and not the mower buckets

_____ 79

It matters how you manage the accumulating thatch/mat layer

- Cultivation has a significant impact. At minimum, use practices that help incorporate sand.
- Topdressing is critical. Can use a fine sand (0.25-5 mm) to ensure enough sand will be applied during summer, in combo with a medium (< 1 mm) with more aggressive aerification (core, solid or injection). Avoid sands of < 0.15.

80

82

81

Thank you and best wishes for 2025!

Download link