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Abstract
Precision turfgrass management (PTM) is a combination of methods and technolo-

gies proposed to increase the resiliency of golf courses by improving input efficiency

while maintaining the function and aesthetics of the playing surface. However, there

is no recent review describing the status of precision management in turfgrass. The

objectives of this review were to (a) summarize peer reviewed research on precision

technology for turfgrass management, (b) describe adoption of PTM-based tools, and

(c) propose an agenda of research priorities to advance and promote PTM adoption.

Of the articles reviewed, 94% documented the accuracy of sensors to detect turfgrass

performance and stressors before or during visual symptoms. Only 6% of the research

reviewed focused on developing models or decision support systems to quantify the

relationship among reflectance, nitrogen uptake, visual quality, biomass production,

and irrigation which are required for precision management by golf course superin-

tendents. Efficacy or value of using PTM methods and technologies have not been

reported. Golf course superintendents lack of knowledge about PTM, and lack of

quantification of benefits of PTM pose limitations to promote adoption. Increasing

the adoption of PTM will require research to focus additionally on automating sen-

sor data processing; quantifying costs, benefits, and value of adopting PTM; and

simplifying input applications in a PTM system. This review described the status

of precision management in golf course turfgrass and shed light into the need for

research to develop models and decision support tools for precision management of

golf course turfgrass.

1 INTRODUCTION

Turfgrass is defined as a plant system that remains green for 6

or more months while maintaining a dense contiguous ground

Abbreviations: DGCI, dark green color index; ECa, soil apparent electrical

conductivity; GIS, geographic information systems; GPR, ground

penetrating radar; GPS, global positioning system; IPM, integrated pest

management; NDVI, normalized difference vegetation index; PTM,

precision turfgrass management; SSMU, site specific management unit;

UAV, unmanned aerial vehicle; VARI, visible atmospherically resistant

index.
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cover during dormancy (Steinke & Ervin, 2013). Golf course

turfgrass is managed to maintain specific function and aes-

thetics that vary depending on the intensity of use (Throssel

et al., 2009). The intensity of management required on golf

course turfgrass drives demand for turfgrass care products and

economic expenditures (Haydu et al., 2006). The U.S. golf

course turfgrass sector employs more than 300,000 people and

produces an estimated 44% of the total economic output of the

turfgrass industry at the time of this review, or US$24 billion

annually (Haydu et al., 2006). The number of golf courses

in the United States, estimated to be 16,000 (National Golf
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Foundation, 2021) is comparable to the number of golf

courses in the rest of the world (Specialty Products Con-

sultants, 2009). Even as the number of golf courses have

decreased in the last two decades, the remaining facilities have

invested a total of $3.8 billion in renovations during the same

period (National Golf Foundation, 2021), suggesting that the

golf course turfgrass sector is a large industry willing to invest

in improving play for golfers.

Golfers expect the superintendent to maintain turfgrass

with lush color, manicured surfaces, and long ball roll on

putting greens due to the influence of televised manicured golf

courses (Breuninger et al., 2013). Golfer’s expectations often

increase the use of water, fertilizer, fuel, and pesticides on golf

courses. Golf course turfgrass is primarily located in urban

areas competing for water with other urban uses and can be

viewed as a luxury, making it an easy target for restrictions

(Breuninger et al., 2013). New products, technologies, and

management methods are needed to increase the resiliency of

golf course turfgrass and efficiency of input applications to

manage turfgrass function (Breuninger et al., 2013). Precision

turfgrass management, defined as precise field applications

to target irrigation, fertilizer, pesticide, or cultural applica-

tions to meet turfgrass function and aesthetics, offers one

such possibility.

Deficit water can reduce the function and aesthetic value

of turfgrass, whereas extreme drought can result in complete

loss of turfgrass stands. Water, applied through irrigation, is

the largest and most important input for golf course turfgrass

growth (GCSAA, 2015a). Golf courses in the United States

were estimated to use 1.9 million acre-ft of water in 2013, a

22% decrease in water applied from 2005 (GCSAA, 2015a).

The median amount of water applied on golf courses ranges

annually from 400 acre-ft in the arid and warm Southwest

United States to 37 acre-ft in the cool and rainy Northeast

(GCSAA, 2015a). Increasing the efficiency of irrigation with

precision management would help golf courses reduce cost

and environmental impact while maintaining function and

aesthetics (Straw et al., 2018).

Nitrogen (N) is the highest volume fertilizer applied on golf

courses (Carey et al., 2012; Kussow et al., 2012). Although

historically, some golf course superintendents have adjusted

N fertilizer rates based on clipping volume or biomass,

most continue to rely on seasonal scheduling or inherited

knowledge that is not based on more precise quantitative

measurements. Golf courses have reduced the N fertilizer

applied by 35% from 2006 to 2014. Only 21% of this

reduction can be attributed to a change in application rates,

whereas 16% has been attributed to a reduction in total fer-

tilized acreage (GCSAA, 2015b). Increasing the efficiency

of nutrient applications is important as 24% of golf courses

reported restrictions on nutrients in 2015, compared with

8% in 2006 (GCSAA, 2015b). Precision management of N

fertilizer applications would increase N use efficiency reduc-

Core Ideas
∙ Precision turfgrass management is proposed to

increase golf course resiliency.

∙ Research has focused on measuring performance

and stressors of turfgrass.

∙ Superintendents’ lack of knowledge about pre-

cision turfgrass management poses a challenge

toward future adoption.

∙ Future research should focus on developing pre-

cision turfgrass management decision support

systems for golf course turfgrass.

ing detrimental effects of overapplication on the surrounding

environment.

Diseases, weeds, and insects reduce turfgrass playability

and aesthetics, requiring pesticide applications to prevent or

reduce the infected area. Fungicides are the most sold pesti-

cide on golf courses accounting for more than $170 million

of fungicides sold annually (Specialty Products Consultants,

2009). Herbicides are the second largest pesticide economic

input on golf courses with more than $80 million of herbi-

cides sold annually (Specialty Products Consultants, 2009).

Insecticide sales account for $24 million of annual pesticide

sales on golf courses (Specialty Products Consultants, 2009).

Golf courses increased reliance on fungicides and herbicides

by 4 and 2% from 2007 to 2015, respectively, and reduced

insecticide usage by 4% during the same period (GCSAA,

2016). During the same time period, 2007–2015, golf courses

reported an increase in their reliance on integrated pest man-

agement (IPM) practices by 66% (GCSAA, 2016). The IPM

practices adopted included scouting for pests, monitoring

weather, rotating pesticides, spot treatments, and improved

plant health (GCSAA, 2016). Precision management of pesti-

cides could increase the resiliency of golf courses by reducing

overapplication of pesticides while controlling pest outbreaks.

Golf course superintendents manage areas of turfgrass

such as roughs, tees, fairways, and putting greens differently,

depending on the function. Precision turfgrass management

(PTM) is suggested to improve the management of golf

courses by increasing input efficiency throughout areas of

the property (Carrow et al., 2010). The precision agriculture

and conservation concept of applying inputs (i.e., water, fertil-

izer, pesticides, etc.) where, when, and in the amount needed

is adopted in PTM. Geo-referenced sensors and geographic

information systems (GIS) are used in PTM, precision agri-

culture, and conservation to develop management plans that

address spatial and temporal variability to increase input effi-

ciency (Corwin & Lesch, 2005; Delgado & Berry, 2008).

Maintaining consistent function is a goal of PTM by using
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technology to increase the micromanagement of resources for

efficient irrigation, fertilizer, and pesticide applications (Bell

& Xiong, 2008; Bell et al., 2013; Krum et al., 2010). Eco-

nomic, environmental, and societal factors are catalysts for

research and adoption of PTM to increase the efficiency of

input applications through site-specific management (Beard

& Kenna, 2008; Carrow et al., 2010). There are no reviews

of PTM methods and technologies which could help direct

future research into precision management of golf course

turfgrass.

The adoption of PTM can allow golf course superinten-

dents to maintain playability and aesthetic goals of golf and

increase the efficiency of input applications. Precision turf-

grass management adopts the precision agriculture concept

of applying inputs to increase the site-specific efficiency of

irrigation, fertilizer, and pesticide applications to increase

resiliency and reduce environmental impact on golf courses.

Reflectance sensors and GIS technology research is needed

to create adoptable methods and decision support systems to

help golf course superintendents to increase management effi-

ciency. The objectives of this review were to (a) summarize

peer reviewed research on precision technology for turfgrass

management, (b) describe current precision turfgrass research

and adoption, and (c) propose an agenda of research priorities

to promote PTM adoption.

2 METHODS

More than 270 studies were selected for review based on

following criteria: published in a peer-reviewed journal, avail-

able in the English language, conducted in the laboratory or

field over the course of at least 1 year, precision management

or technologies and remote sensing studied on turfgrass. This

review includes studies conducted on plot-scale experiments,

operational golf courses, and in the laboratory. Relevant

studies researching remote-sensing technologies on turfgrass

management on golf courses, sports fields, and lawn manage-

ment systems were included. The time frame for articles were

chosen from 2000 to 2022 to review turfgrass science articles

concurrent to the start of research defining PTM up to current

day.

Journal articles were collected from the Web of Science

databased from Clarivate Analytics and Scopus on 17 Aug.

2021, with the search statement “TS = (turfgrass) AND (pre-

cision or remote sensing)” restricted to journal articles in

English among all publication dates and database indices.

The Web of Science search produced 85 unique journal arti-

cles, and the Scopus search produced 71 journal articles.

The Turfgrass Information File (Michigan State University)

was searched on 18 Aug. 2021, with the search statement

“precision or remote sensing” restricted to journal articles in

English among all publication dates and database indices. The

Turfgrass Information File search produced 119 unique jour-

nal articles. Additional articles were selected based on their

importance to the adoption of PTM or how they documented

current PTM research. There was a total of 275 journal articles

produced among all searches, after redundancies 170 journal

articles were identified.

The peer-reviewed papers were ordered by publication date

and selections started with the most recent published papers.

Abstracts were read to determine if papers met the objectives

of this review focused on precision management and technol-

ogy. Papers that used remote sensing to document turfgrass

occurrence for land classification or ecological analysis of

water use were not considered and made up the majority of the

170 unique journal articles found in databases. After selec-

tion, 78 articles were used in this review including articles

that were not found in the database searches. The experimen-

tal treatments, treatment levels, and statistically significant, as

reported by authors, were summarized.

3 RESULTS

In this review 78 studies were analyzed, and we arbitrarily

grouped the literature into the following five groups: GPS,

remote sensing, imagery, electrical conductivity, and acous-

tic sensors. The peer reviewed research was used to determine

gaps in the research and suggest research priorities to increase

PTM adoption on golf courses.

3.1 Global positioning system research for
precision turfgrass management

Increasing the efficiency of input applications requires geo-

referenced sensors to measure and locate turfgrass perfor-

mance and stressors. Current GPS research quantified spatial

variability of soil volumetric water content (Krum et al.,

2010; Straw et al., 2016), variation of sports turfgrass fields

(Straw & Henry, 2018), or soil ECa (Ganjegunte et al., 2013;

Grubbs et al., 2019). Straw et al. (2017) and Krum et al.

(2011) reported the use of sensor technology to accurately

describe the spatial variability of soil and plant parame-

ters on sports turfgrass fields by defining the number of

samples needed to document the variability. Georeferenc-

ing locations of insect populations could be used to develop

precision insecticide applications. The spatial variability of

annual bluegrass weevil (Listronotus maculicollis) limited the

ability of McGraw et al. (2009) to detect statistical signifi-

cance of nematode treatments and future research was needed

to determine how to locate annual bluegrass weevils. Diaz

and Peck (2007) reported that location of annual bluegrass

weevil varied among the type of habitat on golf courses

with higher populations in higher mown rough, than lower
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mown putting greens. Gireesh et al. (2021) reported that hunt-

ing billbug (Sphenophorus venatus vestitus) larval population

exhibited 12.8 ft range of spatial dependence and suggested

that georeferenced 13.1-ft samples should accurately quantify

the spatial variability of hunting billbug population on sod

farms.

Locating disease infestations with geo-referenced imagery

or sensors can help reduce the negative effects diseases

may have on turfgrass function or aesthetics. Dollar spot

(Sclerotinia homoeocarpa Bennett) has been reported to

exhibit a stable pattern of spatial aggregation throughout the

growing seasons on creeping bentgrass and annual bluegrass

(Poa annua L.) stands (Horvath et al., 2007), which is similar

to the spatial aggregation of large patch (Rhizoctonia solani
L.P.) on zoysiagrass (Zoysia japonica Steud.) (Spurlock &

Milus, 2009). Booth et al. (2021) reported that unmanned

aerial vehicle (UAV) imagery can classify areas of and control

spring deadspot (Ophiosphaerella spp.) on fairways whereas

sprayer hardware and spring deadspot image classification

methods need to improve for individual nozzle control. Henry

et al. (2009) documented the distribution of dallisgrass (Pas-
palum dilatatum Poir.) and bahiagrass (Paspalum notatus
Fluegge) in fairway and rough turfgrass with a GPS unit and

reported that both weeds had higher plant densities in mod-

erately compacted soil. Adopting GPS sampling and sprayers

enabled with individual nozzle control could reduce applica-

tion time and product usage as the sprayer would apply inputs

only where desired, whereas this has not been reported.

3.2 Remote sensing research on turfgrass

Spectral reflectance is a reliable, nondestructive method cor-

related with visual assessments to estimate turfgrass stressors

(Trenholm et al., 2000). Measurements of canopy reflectance

provide routine and frequent data which can be correlated

to turfgrass health, visual quality, color, or function (Bell

et al., 2004; Bell & Xiong, 2008). Canopy reflectance mea-

surements reduce time spent rating visual quality by 58%

compared with visual evaluation (Bell et al., 2009; Sulli-

van et al., 2017). Multispectral sensors typically measure

wideband canopy reflectance whereas hyperspectral sensors

measure narrowbands of canopy reflectance increasing the

time for data processing. Hutto et al. (2006) reported that

hyperspectral reflectance can differentiate between zoysia-

grass, St. Augustinegrass (Stenotaphrum secundatum Walt.),

common centipedegrass (Eremochloa ophiuroides Munro),

and creeping bentgrass (Agrostis stolonifera L.) and the weed

species: dallisgrass (Paspalum dilatatum Poir.), southern

crabgrass (Digitaria ciliaris Retz.), eclipta (Eclipta pros-
trata L.), and Virgina buttonweed (Diodia virginiana L.) with

85% accuracy. The authors suggested future sensor research

should focus on determining specific wavelengths to increase

accurate classification among species.

Hyperspectral sensors detect critical soil water content

1 day before visual drought symptoms occur with an r2

of .64 (Dettman-Kruse et al., 2008). An et al. (2015) sug-

gested hyperspectral reflectance data can determine the most

appropriate wavelengths to determine turfgrass stressors. The

water band index measurements from hyperspectral sensors

have been reported to exhibit a strong relationship to soil

volumetric water content suggesting that the water band

index can be used to monitor for turfgrass water stress aside

other plant stressors measured by other vegetation indices

(Badzmierowski et al., 2019; McCall et al., 2017; Rober-

son et al., 2021). Multispectral data are typically wideband

measurements of canopy reflectance, often lacking the fine

detail needed for differentiating stressors, whereas they are

much easier to process because of the fewer number of bands

measured.

Vegetation indices calculated from reflectance are univer-

sal methods of measuring turfgrass performance or stressors.

Normalized difference vegetation index (NDVI) and red vege-

tation index are highly correlated with visual quality (r2 of .71

and .73, respectively) (Fitz-Rodriguez & Choi, 2002). Vege-

tation index measurements of turfgrass from proximal, UAVs,

or satellite sensors accurately discriminate among different

cultivars or species and are highly correlated among sensor

platforms with r2 ranging from .83 to .99 (Caturegli et al.,

2014; Caturegli, Lulli, et al., 2015). These findings suggest

that turfgrass superintendents and researchers can use sen-

sor platforms that best fit their operations. Multiple vegetation

indices measured from different sensor platforms are reported

to discriminate among N status which could be used to pin-

point areas that need varying rates of N to maintain consistent

function (Baghzouz et al., 2006, 2007; Caturegli, Casucci,

et al., 2015; Caturegli et al., 2016; Flowers et al., 2010; Guil-

lard et al., 2021). Caturegli, Grossi, et al. (2015), Johnsen et al.

(2009), and Kruse et al. (2006) reported that NDVI detects

drought stress up to 47 hours before visual symptoms which

could determine locations where irrigation is needed to main-

tain aesthetics. The water band index has been reported to be

a better measure of plant water content than NDVI because

it estimates the moisture limitations within a plant canopy

(Badzmierowski et al., 2019; McCall et al., 2017; Roberson

et al., 2021). Roberson et al. (2021) reported that water band

index predicted moisture stress 12 hours before 50% visual

estimation of wilt, compared with only 2 hours using NDVI.

Vegetation indices can detect insect feeding on lawn-height

turfgrass 10–16 days before visual damage symptoms which

could be used to prescribe precision insecticide applications

(Hamilton et al., 2009). Vegetation indices, like NDVI or

red vegetation index, remotely can detect differences in turf-

grass reflectance caused by moisture stress, N status, or insect
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F I G U R E 1 Workflow of proposed research to achieve mature adoption of precision turfgrass management (PTM) managing input applications

on golf course turfgrass

feeding, whereas vegetation indices alone cannot distinguish

among stressors.

Few publications developed models to quantify the rela-

tionship among reflectance, N uptake, visual quality, biomass

production, and irrigation. Flowers et al. (2010) reported that

a linear plateau model quantifies the relationship between

N uptake and NDVI on perennial ryegrass seed fields. The

authors suggested that developing a prescription N fertilizer

model would be the next step, comparable to those developed

for row crops (Scharf et al., 2011). Canopy reflectance mea-

surements should be incorporated into breeding programs to

aid golf course superintendents in selecting cultivars based

on potential biomass production and salinity tolerance. Vines

and Zhang (2022) suggested that canopy reflectance would

allow turfgrass breeders to assess larger numbers of turfgrass

genotypes to efficiently identify elite germplasm to cultivar

development to meet the future demands of the turfgrass

industry. Three derivations of NDVI and a red edge posi-

tion vegetation index are positively linearly correlated with

Kentucky bluegrass (Poa pratensis L.) biomass production

(Poss et al., 2010). The authors reported that NDVI has a

negative linear correlation between Kentucky bluegrass cul-

tivars and salinity. Turfgrass water content and NDVI, soil

adjusted vegetation index, and visible atmospherically resis-

tant index (VARI) exhibit nonlinear relationships (Taghvaeian

et al., 2013). Models of vegetation index response to turfgrass

growth and stressors are required to develop decision support

system tools for precision management.

3.3 Imagery research for precision
turfgrass management

Thermal imagers have been reported to detect turfgrass

drought stress before visual symptoms. Hong et al. (2019a)

reported that thermal imagers on UAVs detect drought stress 5

days before visual symptoms on creeping bentgrass. Thermal

imaging detected rises in creeping bentgrass canopy tem-

perature before visual silt using UAVs whereas all canopy

reflectance vegetation indices other than the GreenBlue veg-

etation index, were not able to discriminate among rises

in canopy temperature (Hong et al., 2019b). Taghvaeian

et al. (2013) reported that thermal imagery measuring tur-

fgrass canopy temperature can be used in the Grass Water

Stress Index to identify both the timing and amount of

irrigation needed similar to a complex surface energy bal-

ance model approach. Thermal imagers are another tool that

golf course superintendents can use to monitor and sched-

ule irrigation applications to mitigate drought stress and

wilt. Geo-referencing thermal images would provide exact

locations to increase the efficiency of water applied.

Visual cameras, or digital imagers, detect turfgrass dis-

ease stress and N status faster and more precisely than visual

ratings. Richardson et al. (2001) reported that digital image

analysis estimates of green bermudagrass turfgrass cover

exhibited high correlation to calculated values of turfgrass

cover (r2 = .99) and reduced the mean error of percentage

cover compared with traditional visual estimation methods.
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Digital image-based Dark Green Color Index (DGCI) was

also reported to have a strong relationship with visual qual-

ity ratings while reducing the mean error compared with the

multiple ratings, and time spent processing to determine color

(Karcher & Richardson, 2003). Analyzing turfgrass cover

and color with digital image analysis was also reported to

reduce processing time by more than 24 hours providing tur-

fgrass breeders more efficient methods to assess cultivars

(Karcher & Richardson, 2005). Zhang et al. (2019) reported

that UAV-based camera images used to calculate NDVI and

VARI predicted percentage ground cover with r2 of .86 and

.87, respectively. Camera-based digital image analysis is a

tool that turfgrass breeders can use to quantify turfgrass cover

and color more reliably while reducing time spent sampling,

processing, or rating the turfgrass.

Visual cameras have been reported to provide accurate

methods to locate disease symptoms on turfgrass and reduce

total fungicides applied. Digital image analysis of camera

images is more precise at estimating brown patch (Rhizocto-
nia solani L.) infestation on tall fescue (Festuca arundinacea
L.) from 0 to 100% disease severity than visual estimation

(Sykes et al., 2017). Booth et al. (2021) reported that UAV-

based digital image analysis classifying spring deadspot on

bermudagrass fairways resulted in 51 and 65% less fungi-

cide applied while achieving similar control as the broadcast

fungicide application. Cameras could be used to create pre-

scription fungicide application maps based on the location of

disease-infested areas.

Camera-based systems would provide turfgrass superinten-

dents and researchers an affordable, time-saving tool to assess

turfgrass performance. Image-based DGCI is highly corre-

lated with N status of bermudagrass (Cynodon dactylon L.)

and tall fescue with r2 of .86 and .95, respectively (Caturegli

et al., 2020). Visual quality of tall fescue is highly correlated

with DGCI as r2 ranges from .88 to .94 (Ghali et al., 2012).

Lopez-Bellido et al. (2012) and Agati et al. (2015) suggested

that camera-based analysis of N status is as precise as visual

estimation. Richardson et al. (2010) quantified a digital image

analysis-based method to quantify golf ball lie on fairway and

rough turfgrass that had similar coefficient of variation as

the manual Lie-N-Eye system, while reducing time measur-

ing ball lie. The Lie-N-Eye system quantifies ball lie, or the

amount of the ball exposed above the turfgrass canopy, using

a caliper (Cella et al., 2004) making the system more labor

intensive than imagery. Imagery can provide affordable data

collection and could be used with reflectance to determine

inputs needed to maintain turfgrass function.

The analysis of digital images can discriminate between

turfgrass and weeds to develop prescription herbicide appli-

cations reducing the environmental impact of herbicides.

Convoluted neural networks, an advanced data science tech-

nique, classifies broadleaf and grass weeds in bermudagrass

and perennial ryegrass (Lolium perenne L.) with between 51

and 99% accuracy (Yu et al., 2019a, 2019b; Yu, Schumann,

et al., 2019; Yu et al., 2020). Xie et al. (2021) reported

that a convoluted neural network algorithm classifying

yellow and purple nutsedges (Cyperus esculentus L. and C.
rotundus L., respectively) in a bermudagrass stand reduced

processing time by 95% compared other convoluted neural

network methods. Advanced data science techniques should

be utilized for rapid image classification for see-and-spray

application systems to increase herbicide efficiency. Hunter

et al. (2019) used UAV-based imagery to classify weeds

and create precision herbicide application maps. The authors

reported that precision herbicide applications were 30–300%

more efficient in identifying and treating weeds while reduc-

ing herbicide inputs by 20–60% compared with broadcast

herbicide applications. Imagery can increase the precision of

herbicide applications whereas user-friendly software needs

to be developed to automate data processing.

3.4 Electrical conductivity and ground
penetrating radar precision turfgrass
management research

Soil apparent electrical conductivity (ECa) measured from

electromagnetic induction or electrical resistivity sensors

quantifies the distribution and variability of soil salinity,

leaching, clay, and organic matter content. Soil salinity is

a problem for golf courses that receive recycled water or

in geographies with saline and/or sodic soils. Krum et al.

(2011) reported that ECa quantified the spatial variability of

salinity and leaching potential on a Florida golf course and

was highly correlated to laboratory saturated paste extract

electrical conductivity with r2 of .59 and .87 for salinity

and leaching, respectively. Locating high levels of salinity

in soils could help turfgrass superintendents to focus their

remediation efforts to reduce the effect of the saline soils

on turfgrass performance and aesthetics. Ganjegunte et al.

(2013) reported that ECa accurately quantifies soil electri-

cal conductivity and reduces time and money spent compared

with destructive soil tests. Geo-referenced ECa quantified by

measuring electrical resistivity is reported to have a location-

dependent relationship with clay and organic matter content

(Grubbs et al., 2019). The authors suggested that additional

research is needed to understand how to use ECa to develop

soil-based site-specific management units (SSMUs).

Ground penetrating radar (GPR) research has been reported

to map belowground drainage pipe systems on putting greens

(Allred et al., 2005, 2008; Boniak et al., 2008; Freeland et al.,

2014). Allred et al. (2016) reported that GPR can be used to

quantify soil volumetric water content of putting green sand

layers with strong spatial correlation in three of four dates

sampled (r > .70), whereas the sand layer depth is needed to

accurately map the sand layer water content on putting greens.
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Allred et al. (2016) also reported that GPR systems reported

similar soil volumetric water contents in the sand layer as time

domain reflectometry. Sports turfgrass field compaction using

a georeferenced GPR system produced similar maps of sur-

face hardness of using a Clegg Impact soil tester (Freeland

et al., 2008). Measuring soil compaction on golf courses using

a georeferenced GPR system could provide superintendents

locations of where irrigation of cultivation is needed to main-

tain function and aesthetics. Nondestructive sampling of soil

volumetric water content and soil compaction using GPR is

another technology adapted from precision agriculture with

uses that can help reduce the variability of turfgrass function

and aesthetics.

3.5 Acoustic sensor research for precision
turfgrass management

Acoustic sensors use sound to detect or estimate insect preva-

lence and are suggested to geolocate insect populations in

turfgrass systems providing a method prescribe site-specific

insecticide applications. Brandhorst-Hubbard et al. (2001)

reported that using geostatistical analysis to map acoustic

sensor measurements of soil invertebrates had significant pos-

itive correlations (r2
> .50) suggesting that it was a potential

tool detect insect pests in soils. Acoustic sensors estimate the

number of insects feeding on roots with greater accuracy,

81–92%, than the cup-cutter method which had 38% accu-

racy (Zhang et al., 2003a). The acoustic sensors were also

more accurate at quantifying the number of insects present

at economic injury level requiring insecticide applications,

providing an additional method to tailor prescription insecti-

cide applications. Zhang et al. (2003b) reported that acoustic

sensors monitoring white grub populations in bluegrass (Poa
arachnifera Torr) reported detectable sounds 25% of the time

at temperatures at or below 48.2 ˚F. Acoustic sensors can non-

destructively monitor insect populations in turfgrass stands,

but the accuracy of these measurements can be reduced at low

temperatures.

3.6 Gaps toward adoption of precision
turfgrass management

Generally speaking, golf course superintendents’ lack of

knowledge about PTM methods and technologies poses a

challenge toward future adoption. Straw et al. (2020) reported

that no members of a small group of superintendents inter-

viewed understood the intricacies of processing data required

to incorporate PTM methods on their course. The authors

reported that the major barriers of PTM adoption were the

lack of hands-on experience, attitude toward executing elab-

orate management schedules, insufficient management of

physical resources, and skepticism of the proposed benefits. A

decade earlier, Carrow et al. (2010) reported similar barriers

to PTM adoption: lack of training, decision support systems,

and criteria to assess the benefits. Both studies suggest the

need to develop simplistic management methods using tech-

nologies that do not increase the number of input applications.

Research assessing and quantifying the benefits and costs of

adopting PTM need to be performed and reported to increase

adoption.

More than 90% of articles reviewed focused on using

sensors or imagers to detect differences, whereas <10%

developed models or decision support systems for prescrip-

tion applications. New research should develop models and

decision support systems to determine correct product and

application rates for desired function and aesthetic goals sim-

ilar to how precision agriculture research has focused on

developing models and tools for farmers. Guillard et al. (2021)

developed fall-applied prescription N application models for

lawn-height turfgrass in the Northeast United States, provid-

ing a PTM method for lawncare providers and homeowners

to apply N more precisely to meet the turfgrass N needs.

Straw et al. (2020) developed a method to create SSMUs

from time domain reflectometry soil volumetric water con-

tent data. The author’s method is the only report that provides

superintendents a step-by-step guide to create SSMUs using

free GIS software. Research that develops software to auto-

mate data processing and recommendations for superinten-

dents should decrease the difficulty associated with adopting

PTM.

Minimal research programs have focused on educating

superintendents on using software to process and interpret

geo-referenced sensor data for prescription input maps (Straw

et al., 2020). The authors reported that no superintendents

interviewed know how to perform processes for prescrip-

tion input applications. Superintendents are unsure whether

to dedicate an employee or hire a company to process and

interpret sensor data for input applications (Straw et al., 2020).

Educating superintendents on how to use GIS software to pro-

cess and interpret sensor data is needed. Companies should

develop software to automate data processing, thereby reduc-

ing time and labor required for data interpretation. Existing

precision agriculture software companies could also tailor

their software for golf course turfgrass markets. Decision sup-

port systems should be developed to use all available data to

recommend the most appropriate inputs.

Although autonomous UAVs, sprayers, mowers, and

reflectance data collection technology exists, replacement

of labor-intensive management required to maintain func-

tion and aesthetics will only occur when these autonomous

systems become more common. Automated sensor data

processing for site-specific applications using GPS or see-

and-spray systems are used in agriculture and could be used on

golf courses when biological models are developed (Figure 1).
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Machine learning or computer vision could decrease the

time to classify pests (weeds, diseases, and insects), stress

(drought, heat, or shade), and develop models for prescription

applications (Figure 1). New equipment used in the future on

golf courses will likely be autonomous and require technical

knowledge to interpret data as PTM technology are adopted

from precision agriculture technology which are becoming

automated. Superintendents will need to learn about hard-

ware, software, and data science to manage an automated and

interconnected golf course.

Increasing the adoption of PTM will require research to

focus on: (a) developing biological models and decision sup-

port systems to determine the most appropriate input and

prescription input applications, (b) automating sensor data

processing, (c) quantifying the costs, benefits, and value of

adopting PTM, and (d) simplifying the input applications in a

PTM system.

4 CONCLUSIONS

Methods and technologies associated with PTM are pro-

posed to provide golf courses with increased resiliency and

provide protocols for end-users to lower inputs while main-

taining function and aesthetics. Of the articles reviewed, 94%

documented accuracy of sensors to detect turfgrass perfor-

mance and stressors before or during visual symptoms. The

remaining 6% of papers reviewed developed models or deci-

sion support systems from sensor data to guide management

decisions. Current peer reviewed literature does not docu-

ment adoption rates of PTM on golf courses. The literature

does document the lack of knowledge among superinten-

dents and lack of quantification of the benefits of PTM

posing a limitation to promote adoption. Future research

should develop decision support system tools that integrate

sensors, models, and precision equipment for prescription

input applications. Companies and researchers should focus

on automating data collection, processing, and interpretation

for input applications by GPS and computer guided sprayers.
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